N3 - THERMOCHEMISTRY

Hess's Law

Hess's Law

"In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or a series of steps."

Hess's Law

Path A - Mrs. Farmer cleaning the house.
Path B - Mr. Farmer cleaning the house.

Regardless of the path taken, you still get to the same place.

Although Path B drives Mrs. Farmer bonkers - Ha!

Relationships Involving $\Delta H_{r x n}$

Multiplying Rxn by a \# to Change Coefficients ΔH_{rxn} is multiplied by that factor.

- Because ΔH_{rxn} is extensive - depends on the amount of substance

$$
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)
$$

$$
2 \mathrm{C}(s)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g) \quad \Delta H=2 \times(-393.5 \mathrm{~kJ})=-787.0 \mathrm{~kJ} .
$$

Reversing a rxn to flip which side the products/reactants are on Flip the sign of ΔH, if positive now negative, if negative, now positive

$$
\begin{aligned}
& \mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \\
& \mathrm{CO}_{2}(g) \rightarrow \mathrm{C}(s)+\mathrm{O}_{2}(g)
\end{aligned}
$$

$$
\Delta H=-393.5 \mathrm{~kJ}
$$

$$
\Delta H=-(-393.5)=+393.5 \mathrm{~kJ}
$$

Standard Conditions

Standard State

The state of a material at a defined set of conditions.

- Pure gas at 1 atm pressure
- Pure solid or liquid in its most stable form at 1 atm pressure and temperature of interest (usually $25^{\circ} \mathrm{C}$)
- Substances in a solution with a 1M concentration

Standard Enthalpy Change

Standard Enthalpy Change

$\Delta \mathrm{H}^{\circ}$ - the Enthalpy change when all reactants and products are in their standard states.

That's what the ${ }^{\circ}$ symbol means - that it is under the standard conditions. You can have $\Delta \mathrm{H}$ values that are not at standard conditions, then you leave the ${ }^{\circ}$ off.

Standard Enthalpy of Formation

Standard Enthalpy of Formation

$\Delta \mathrm{H}_{\mathrm{f}}$ - the Enthalpy change for the reaction forming 1 mole of a pure compound from its constituent elements.

- Elements must be in their standard states
- $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ for a pure element in its standard state $=0 \mathrm{~kJ} / \mathrm{mol}$ That includes diatomic gases! They are still pure elements!

Hess's Law Example Problem \#1

Calculate $\Delta \mathrm{H}$ for the combustion of methane, CH_{4} :
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Step \#1:

CH_{4} must appear on the reactant side, so we reverse reaction \#1 and change the sign on $\Delta \mathrm{H}$.

$$
-r \times n 1 \quad \mathbf{C H}_{4} \mathbf{\rightarrow} \mathbf{C}+\mathbf{2 H}_{\mathbf{2}}
$$

$\#$	Reaction	$\Delta \mathrm{H}^{\mathrm{o}}$
1	$\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}$	-74.80 kJ
2	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$	-393.50 kJ
3	$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$	-285.83 kJ

+74.80 kJ

Hess's Law Example Problem \#1

Calculate $\Delta \mathrm{H}$ for the combustion of methane, CH_{4} :
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Step \#2:

Keep reaction \#2 unchanged, because CO_{2} belongs on the product side

$\#$	Reaction	$\Delta \mathrm{H}^{\circ}$
1	$\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}$	-74.80 kJ
2	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$	-393.50 kJ
3	$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$	-285.83 kJ

$$
\begin{array}{ll}
\operatorname{rxn} 1 & \mathrm{CH}_{4} \rightarrow \mathrm{C}+\mathrm{CH}_{2} \\
\operatorname{rxn} 2 & \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
\end{array}
$$

+74.80 kJ
-393.50 kJ

Hess's Law Example Problem \#1

Calculate $\Delta \mathrm{H}$ for the combustion of methane, CH_{4} :
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Step \#3:

Use reaction \#3 to get water as a product, but multiply it by 2 since you have $2 \mathrm{H}_{2} \mathrm{O}$

$\#$	Reaction	$\Delta \mathrm{H}^{\mathrm{o}}$
1	$\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}$	-74.80 kJ
2	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$	-393.50 kJ
3	$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$	-285.83 kJ

$$
\begin{array}{rl}
-r \times n 1 & \mathrm{CH}_{4} \rightarrow \mathbf{C}+\mathbf{2 H}_{2} \\
r \times n n_{2} & \mathrm{C}+\mathbf{O}_{2} \rightarrow \mathrm{CO}_{2} \\
2 \times r \times n 3 & \mathbf{2 \mathrm { H } _ { 2 }}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}
\end{array}
$$

+74.80 kJ
-393.50 kJ
$2 \times(-285.83 \mathrm{~kJ})$

Hess's Law Example Problem \#1

Calculate $\Delta \mathrm{H}$ for the combustion of methane, CH_{4} :
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Step \#4:

Cross out things that show up on both sides, then sum up your $\Delta \mathrm{H}$ values

$\#$	Reaction	$\Delta \mathrm{H}^{\circ}$
1	$\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}$	-74.80 kJ
2	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$	-393.50 kJ
3	$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$	-285.83 kJ

rxn 1	$\mathrm{CH}_{4} \rightarrow \mathscr{L}+2 \mathrm{H}_{2}$	+74.80 kJ
rxn 2	$\stackrel{C}{+} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$	-393.50 kJ
$2 \times \mathrm{rxn} 3$	$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	$2 \times(-285.83 \mathrm{~kJ})$
	$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	-890.36 kJ

Hess's Law Example Problem \#2

$2 \mathrm{NOCl}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{Cl}_{2}(g) \quad \Delta H=$?
$R \times n \# 1) 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) \quad \Delta H=90.3 \mathrm{~kJ}$ Rxn \#2) $\mathrm{NO}(g)+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NOCl}(\mathrm{g}) \quad \Delta H=-38.6 \mathrm{~kJ}$
(A) -51.7 kJ
(B) 51.7 kJ

C -103.4 kJ
(D) 103.4 kJ
(E) 142.0 kJ

Hess's Law Example Problem \#2

$2 \mathrm{NOCl}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H=$?

$\mathrm{Rxn} \# 1)$		
$\mathrm{Rxn} \# 2) \mathrm{NO}(g)+1 / 2 \mathrm{~N}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(g)$	$\Delta H=$	90.3 NJ
$\mathrm{NOCl}(g)$	$\Delta H=$	-38.6 kJ

(A) -51.7 kJ
(B) 51.7 kJ

C -103.4 kJ
D 103.4 kJ

Rxn $\#$	How to change it	Rxn	ΔH
2	-and x 2	$2 \mathrm{NOCl} \rightarrow 2 \mathrm{~N}^{2}+\mathrm{Cl}_{2}$	$-2(-38.6)$
1	-and $\times 2$	$2 \mathrm{~N} O \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$	$-(90.3)$
		$2 \mathrm{NOCl} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}+\mathrm{Cl}_{2}$	-103.4 kJ

(E) 142.0 kJ

Hess's Law Example Problem \#3

$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad$ Calculate standard enthalpy change Rxn \#1) $3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-47 \mathrm{~kJ}$ $\mathrm{Rxn} \# 2) \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-25 \mathrm{~kJ}$ $\mathrm{Rxn} \# 3) \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{FeO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=19 \mathrm{~kJ}$
(A) -53 kJ

B -3 kJ
C -41 kJ
(D 22 kJ
(E) -11 kJ

Hess's Law Example Problem \#3

$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad$ Calculate standard enthalpy change

Rxn \#1) $3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=-47 \mathrm{~kJ}$
Rxn \#2) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=-25 \mathrm{~kJ}$
$\mathrm{Rxn} \# 3) \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{FeO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=19 \mathrm{~kJ}$

(A)	-53 kJ
B	-3 kJ
C	-41 kJ
(D	22 kJ
(C	-11 kJ

$\begin{array}{\|c\|c\|} \hline \mathbf{R x n} \\ \# \end{array}$	How to change it	Rxn	$\Delta \mathrm{H}$
3	$\begin{aligned} & - \text { and } \\ & \times 1 / 3 \end{aligned}$	$\mathrm{FeO}+1 / 2 \mathrm{CO} 2+1 / 3 \mathrm{Fg}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{Ob}$	$-1 / 3$ (19)
1	$\begin{aligned} & \text { - and } \\ & \times 1 / 6 \end{aligned}$	$1 / 2 \mathrm{~F}_{3} \mathrm{O}_{4}+1 / 8 \mathrm{LO}_{2} \rightarrow 1 / 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+1 / 8 \mathrm{C}$	$-1 / 6(-47)$
2	x 1/2	$1 / 2 \mathrm{~F}_{2} \mathrm{O}_{3}+2 / 2 \mathrm{CO} \rightarrow \mathrm{Fe}+2 / 2 \mathrm{CO}_{2}$	1/2(-25)
		$\mathrm{FeO}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$	-11 kJ

Its just a puzzle!

Sometimes it's a really hard puzzle... but it's still just a puzzle!

All the pieces are there, you just have to figure out how to
 put them together...

Unfortunately no real "tricks" for how to figure out which parts to put together.

